首页> 外文OA文献 >Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization.
【2h】

Static crushing of aluminium tubes filled with PET foam and a GFRP skeleton. Numerical modelling and multiobjective optimization.

机译:静态破碎填充有pET泡沫和GFRp骨架的铝管。数值模拟和多目标优化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This investigation focuses on the multiobjective optimization of a crash box subjected to static loading by using a validated numerical model and an analytical approach. The crash box is made with a unique combination of three materials: an aluminium tube filled with polyethylene terephthalate (PET) foam and a glass-fibre reinforced polymer (GFRP) skeleton. A finite element model was calibrated based on the results obtained in a material testing campaign using appropriate constitutive equations. A J2–plasticity model was used for the material behaviour of the aluminium alloy, and the PET foam was modelled using Deshpande and Fleck’s model. Regarding the short-fibres GFRP, a Voce plasticity model was fitted to the experimental data. After a successful validation of the finite element model, the filled aluminium tube was subjected to a structural optimization to achieve the best crash performance. Three relevant design variables were selected: the thickness of the outer aluminium cylinder, the thickness of the GFRP and the density of the PET foam, the last being related to the crushing strength of the foam. Given the high computational cost of each finite element model, a multi-adaptive regression splines metamodel was fitted to a large-scale sampling. Optimum pairs were obtained for the absorbed energy, the specific energy absorption, the peak load and the mass of the component; stating the relative contribution of each design variable to the crashworthiness of the crash box and enabling the choice of a balanced optimum design. A semi-empirical model based on Hanssen’s interaction formula was calibrated with the data from a validated finite element model. This analytical model was able to reproduce the behaviour of the component over the design region selected for the optimization, and was also used for its optimization with satisfactory results.
机译:这项研究的重点是通过使用经过验证的数值模型和分析方法,对承受静态载荷的碰撞盒进行多目标优化。碰撞盒由三种材料的独特组合制成:填充有聚对苯二甲酸乙二酯(PET)泡沫的铝管和玻璃纤维增​​强的聚合物(GFRP)骨架。基于材料测试活动中使用适当的本构方程获得的结果,对有限元模型进行了校准。 J2塑性模型用于铝合金的材料性能,PET泡沫使用Deshpande和Fleck的模型建模。对于短纤维GFRP,将Voce可塑性模型拟合到实验数据。在成功验证了有限元模型之后,对填充的铝管进行了结构优化,以实现最佳的碰撞性能。选择了三个相关的设计变量:外部铝制圆柱体的厚度,GFRP的厚度和PET泡沫的密度,最后一个与泡沫的抗碎强度有关。考虑到每个有限元模型的高计算成本,将多自适应回归样条元模型拟合到大规模采样中。获得最佳的吸收能量,比能量吸收,峰值载荷和组分质量对。说明每个设计变量对碰撞盒耐撞性的相对影响,并能够选择平衡的最佳设计。使用已验证的有限元模型中的数据对基于Hanssen相互作用公式的半经验模型进行了校准。该分析模型能够在为优化选择的设计区域内重现组件的行为,并且还可以用于其优化并获得令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号